Electro Mobility and the Energy Vector Hydrogen

The Electro Mobility of the Via Azul system approach will be implemented as an energy efficient continuum of the physical energy supply chain and the economical value chain. Both feasible chains are to be assembled of the Via Azul Energy Quadrants: Energy Resources, Energy Transmission, Energy Storage and Energy Application.
The proof of this thesis will be subject to the feasibility study.

The main challenge for the Electro Mobility is the efficient supply of electrical energy from increasing renewable energy resources (Solar Power plants, Wind Power plants, Hydro Power plants, Biomass Power plants etc), distributed all over Europe, to end-consumers (public and private) in the transportation sector. An energy supply/demand balance between altering RES and asynchronous mobile applications needs to be maintained simultaneously for this energy supply chain. This equilibrium shall be secured through local energy storage, as a Smart Grid Demand Side Management (DSM) approach.

The ‘Via Azul Europe 10’ initiative focuses on a solution approach for an European Highway Network of a new fuelling station generation, equipped with facilities for local energy storage and supply to electric propulsion vehicles (Battery and Fuel Cell). A new installed Via Azul Energy Supply Grid (VA ESG) on a network of 10 initial highways will connect renewable energy sources with the fuelling stations.

The Electrical Energy Transmission to the Point-of-Sale (PoS), applying preferably HVDC underground cable technology, can substantially shorten line approval cycles for a new Wide Area Network (WAN) of the VA ESG. The WAN, implemented on the 10 VA Highways with complementary, preferably underground cable technology (HV)DC/AC Local Area Networks, linked to the WAN approx. every 300-500km, enables local energy supply for vehicle charging/fuelling every 50 km and other mobile energy carrier (e-, H2) applications.

The VA ESG components: VA Smart Grid (electrical WAN/LAN) and VA Hydrogen Grid (HyG: local Hydrogen supply) will be extended by an Energy Dispatching IT-Network, to assure real-time information exchange about decentralized renewable (low-carbon) energy generation vs. local demands, to enable an efficient supply/demand balancing (incl. DSM) at any point in the network.

The fuelling station network shall act within the VA ESG as Point of Local Energy Storage and Supply for mobile applications. The Local Energy Storage and Supply will follow the concept “Energy Vector Hydrogen”, realized through local Electrolysers, transforming the Electrical Energy (VA ESG) into Hydrogen (Chemical Energy) that is stored locally, to be supplied at demand:

If the Energy Transformation will be performed preferably during daily Energy overcapacity periods on the VA ESG, this will enable reliable and Best Prices for the combustible Hydrogen, used in Long Driving Cycle/Light Duty (passenger cars, light transportation) Electro Vehicles with Hybrid propulsion (Fuel Cell) and in Long Driving Cycle/Heavy Duty (Trucks, Ships, Trains etc.) Hybrid/ Electric Vehicles with Internal Combustion Engines (ICE-H2/Hybrid - as soon as there will be further applications in the future).

For Short Driving Cycle/Light Duty Electro Vehicles with propulsion based on standardized batteries only, the Via Azul fuelling station network will provide two recharging alternatives:

1.     Rapid Plug-in Charging, where the electrical energy is taken directly from the Smart Grid outlet at the local fuelling station.

2.     Battery Exchange Points, where a sufficient number of continuously maintained and charged standard batteries will be provided for rapid and highly automated local exchange.

For the recharging of the standard batteries in fuelling station exchange points, there will be always two options to select from, corresponding to temporary local Smart Grid electricity prices:

o    During high energy demand times:
The Hydrogen stored Energy can be provided as well, through stationary Fuel Cells at the Fuelling Stations.

o    During low energy demand times:
The electricity can be provided directly by the VA ESG. In local cases, where Hydrogen will be produced directly from renewable (low-carbon) resources (i.e. High Temperature Electrolysis: Hydrosol plants, Waste-Pyrolysis plants, etc.), overcapacities of the hydrogen flow within the local section of the VA ESG (i.e. local pipelines) can be used as well to convert Hydrogen via stationary Fuel Cells into LAN electricity, during economically feasible periods.

In local cases, where Hydrogen will be produced directly from renewable resources (i.e. High Temperature Electrolysis: Hydrosol plants, Waste-Pyrolysis plants, etc.), overcapacities of the hydrogen flow within the local section of the VA ESG (i.e. local pipelines) can be used as well to convert Hydrogen via stationary Fuel Cells into LAN electricity, during economically feasible periods.

The Energy Vector Hydrogen combined with intelligent VA ESG ICT-Dispatching/DSM facilities will enable a stable Energy Equilibrium for the European Transportation Sector - based on continuously balanced electrical (VA ESG) and chemical (Energy Vector Hydrogen) energy.

The BENEFITS FOR EUROPEAN ECONOMIES will be tremendous, not only in AUTOMOTIVE AND THE SUSTAINABLE ENERGY SECTOR, but overwhelming in the SECTOR OF TRANSPORTATION, the bloodstream for each economy. The common benefits would be even more groundbreaking, when the Smart Grid will be connected with DESERTEC resources, providing high pike energy generation cycles during shifted time zones.